On the Minimal Sum of Edges in a Signed Edge-Dominated Graph
نویسندگان
چکیده
Let $G$ be a simple graph with $n$ vertices and $\pm 1$-weights on edges. Suppose that for every edge $e$ the sum of edges adjacent to (including itself) is positive. Then weights over at least $-\frac{n^2}{25}$. Also we provide an example weighted described properties $-(1+o(1))\frac{n^2}{8(1 + \sqrt{2})^2}$.
 The previous best known bounds were $-\frac{n^2}{16}$ $-(1+o(1))\frac{n^2}{54}$ respectively. We show constant $-1/54$ optimal under some additional conditions.
منابع مشابه
Edge pair sum labeling of spider graph
An injective map f : E(G) → {±1, ±2, · · · , ±q} is said to be an edge pair sum labeling of a graph G(p, q) if the induced vertex function f*: V (G) → Z − {0} defined by f*(v) = (Sigma e∈Ev) f (e) is one-one, where Ev denotes the set of edges in G that are incident with a vetex v and f*(V (G)) is either of the form {±k1, ±k2, · · · , ±kp/2} or {±k1, ±k2, · · · , ±k(p−1)/2} U {k(p+1)/2} accordin...
متن کاملthe common minimal dominating signed graph
in this paper, we define the common minimal dominating signed graph of a given signed graph and offer a structural characterization of common minimal dominating signed graphs. in the sequel, we also obtained switching equivalence characterizations: $overline{s} sim cmd(s)$ and $cmd(s) sim n(s)$, where $overline{s}$, $cmd(s)$ and $n(s)$ are complementary signed gra...
متن کاملOn the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs
For a coloring $c$ of a graph $G$, the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively $sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$, where the summations are taken over all edges $abin E(G)$. The edge-difference chromatic sum, denoted by $sum D(G)$, and the edge-sum chromatic sum, denoted by $sum S(G)$, a...
متن کاملThe edge tenacity of a split graph
The edge tenacity Te(G) of a graph G is dened as:Te(G) = min {[|X|+τ(G-X)]/[ω(G-X)-1]|X ⊆ E(G) and ω(G-X) > 1} where the minimum is taken over every edge-cutset X that separates G into ω(G - X) components, and by τ(G - X) we denote the order of a largest component of G. The objective of this paper is to determine this quantity for split graphs. Let G = (Z; I; E) be a noncomplete connected split...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Combinatorics
سال: 2022
ISSN: ['1077-8926', '1097-1440']
DOI: https://doi.org/10.37236/10500